#collections #data-structures #probabilistic

probabilistic-collections

Various implementations of collections that use randomization to improve on running time or memory, but introduce a certain amount of error

5 releases (breaking)

0.5.0 Nov 4, 2018
0.4.0 Sep 9, 2018
0.3.0 Sep 8, 2018
0.2.0 Sep 7, 2018
0.1.0 Sep 6, 2018

#214 in Data structures

Download history 14/week @ 2018-10-12 16/week @ 2018-10-19 19/week @ 2018-10-26 44/week @ 2018-11-02 17/week @ 2018-11-09 19/week @ 2018-11-16 38/week @ 2018-11-23 18/week @ 2018-11-30 30/week @ 2018-12-07 12/week @ 2018-12-14 14/week @ 2018-12-21 5/week @ 2018-12-28 12/week @ 2019-01-04 4/week @ 2019-01-11 6/week @ 2019-01-18

72 downloads per month
Used in 1 crate

MIT/Apache

221KB
3.5K SLoC

probabilistic-collections-rs

probabilistic-collections Documentation License: MIT License: Apache 2.0 Build Status codecov

probabilistic-collections contains various implementations of collections that use randomization to improve on running time or memory, but introduce a certain amount of error. The error can be controlled under a certain threshold which makes these data structures extremely useful for big data and streaming applications.

Usage

Add this to your Cargo.toml:

[dependencies]
probabilistic-collections = "*"

and this to your crate root if you are using Rust 2015:

extern crate probabilistic_collections;

Changelog

See CHANGELOG for more details.

References

Bera, Suman K., Sourav Dutta, Ankur Narang, and Souvik Bhattacherjee. 2012. "Advanced Bloom Filter Based Algorithms for Efficient Approximate Data de-Duplication in Streams." CoRR abs/1212.3964. http://arxiv.org/abs/1212.3964.

Cormode, Graham, and S. Muthukrishnan. 2005. "An Improved Data Stream Summary: The Count-Min Sketch and Its Applications." J. Algorithms 55 (1). Duluth, MN, USA: Academic Press, Inc.: 58--75. https://doi.org/10.1016/j.jalgor.2003.12.001.

Fan, Bin, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. 2014. "Cuckoo Filter: Practically Better Than Bloom." In Proceedings of the 10th Acm International on Conference on Emerging Networking Experiments and Technologies, 75--88. CoNEXT '14. New York, NY, USA: ACM. https://doi.org/10.1145/2674005.2674994.

Bender, Michael A., Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane, and Erez Zadok. 2012. "Don'T Thrash: How to Cache Your Hash on Flash." Proc. VLDB Endow. 5 (11). VLDB Endowment: 1627--37. https://doi.org/10.14778/2350229.2350275.

Heule, Stefan, Marc Nunkesser, and Alexander Hall. 2013. "HyperLogLog in Practice: Algorithmic Engineering of a State of the Art Cardinality Estimation Algorithm." In Proceedings of the 16th International Conference on Extending Database Technology, 683--92. EDBT '13. New York, NY, USA: ACM. https://doi.org/10.1145/2452376.2452456.

Flajolet, Philippe, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. "Hyperloglog: The Analysis of a Near-Optimal Cardinality Estimation Algorithm." In IN Aofa '07: PROCEEDINGS of the 2007 International Conference on Analysis of Algorithms.

Kirsch, Adam, and Michael Mitzenmacher. 2008. "Less Hashing, Same Performance: Building a Better Bloom Filter." Random Struct. Algorithms 33 (2). New York, NY, USA: John Wiley & Sons, Inc.: 187--218. https://doi.org/10.1002/rsa.v33:2.

Broder, Andrei Z., Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. 1998. "Min-Wise Independent Permutations (Extended Abstract)." In Proceedings of the Thirtieth Annual Acm Symposium on Theory of Computing, 327--36. STOC '98. New York, NY, USA: ACM. https://doi.org/10.1145/276698.276781.

Sood, Sadhan, and Dmitri Loguinov. 2011. "Probabilistic Near-Duplicate Detection Using Simhash." In Proceedings of the 20th Acm International Conference on Information and Knowledge Management, 1117--26. CIKM '11. New York, NY, USA: ACM. https://doi.org/10.1145/2063576.2063737.

Almeida, Paulo Sérgio, Carlos Baquero, Nuno Preguiça, and David Hutchison. 2007. "Scalable Bloom Filters." Inf. Process. Lett. 101 (6). Amsterdam, The Netherlands, The Netherlands: Elsevier North-Holland, Inc.: 255--61. https://doi.org/10.1016/j.ipl.2006.10.007.

License

probabilistic-collections-rs is dual-licensed under the terms of either the MIT License or the Apache License (Version 2.0).

See LICENSE-APACHE and LICENSE-MIT for more details.

Dependencies